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ABSTRACT
As processors continue to boost the system performance with

higher circuit density, shrinking process technology and near-

threshold voltage (NTV) operations, they are projected to be more

vulnerable to transient faults, which have become one of the ma-

jor concerns for future extreme-scale HPC systems. Despite being

relatively infrequent, crashes due to transient faults are incredibly

disruptive, particularly for massively parallel jobs on supercomput-

ers where they potentially kill the entire job, requiring an expensive

rerun or restart from a checkpoint.

In this paper, we presentCARE, a light-weight compiler-assisted

technique to repair the (crashed) process on-the-fly when a crash-

causing error is detected, allowing applications to continue their

executions instead of being simply terminated and restarted. Specifi-

cally,CARE seeks to repair failures that would result in application

crashes due to invalid memory references (segmentation violation).

During the compilation of applications, CARE constructs a recov-

ery kernel for each crash-prone instruction, and upon an occurrence

of an error, CARE attempts to repair corrupted state of the pro-

cess by executing the constructed recovery kernel to recompute

the memory reference on-the-fly. We evaluated CARE with four

scientific workloads. During their normal execution, CARE incurs

almost zero runtime overhead and a fixed 27MB memory over-

heads. Meanwhile, CARE can recover on an average 83.54% of

crash-causing errors within dozens of milliseconds. We also evalu-

ated CARE with parallel jobs running on 3072 cores and showed

that CARE can successfully mask the impact of crash-causing

errors by providing almost uninterrupted execution. Finally, We

present our preliminary evaluation result for BLAS, which shows

that CARE is capable of recovering failures in libraries with a very

high coverage rate of 83% and negligible overheads. With such

an effective recovery mechanism, CARE could tremendously mit-

igate the overheads and resource requirements of the resilience

subsystem in future extreme-scale systems.
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1 INTRODUCTION
Reliability is a fundamental feature expected from extreme-scale

high performance computing (HPC) systems. However, as new

processor architectures emerge to boost system performance and

energy efficiency with smaller transistor size, higher circuit density,

and near-threshold voltage (NTV) operations, the occurrence of

transient faults has become one of the major concerns for future

extreme-scale HPC systems [1, 4, 13, 21, 31, 35]. In particular, the

above technology trends have an undesirable side-effect on the

reliability of individual hardware components making them more

vulnerable to external noise, e.g., heat fluxes and high energy parti-

cle strikes, which could cause temporary bit-flips in circuits and lead

to transient faults. Unfortunately, these faults are difficult to mask in

a cost-efficient manner [20, 34], and many of them will be exposed

to applications. For instance, Oliveira et al. [31] project that a hypo-

thetical exa-scale machine with 190, 000 cutting-edge Xeon Phi pro-

cessors would experience daily transient errors even though their

memory areas are equipped with ECC (Error-Correcting Code) pro-

tection. Therefore, efficient application-level resilience techniques

are required for future scientific applications [11, 20, 22, 29].

Studies in [3, 9, 16, 23] show that transient faults would either

result in incorrect application outputs (Silent Data Corruptions or

SDCs) or crashes (referred as soft failures in the paper). While

there is significant amount of prior work on detecting and cor-

recting SDCs [6–8, 12], less research effort has gone into handling

soft failures, with the assumption that standard Checkpoint/Restart

(C/R) methods can provide adequate recovery. The C/R technique

periodically writes applications’ intermediate state (checkpoint)

into a stable storage, and loads the latest checkpoint to restart the

computation upon a failure. Relying upon this technique for er-

ror recovery from soft failures is quite effective, but it is also very
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1 // memory access statement
2 phitmp [(mzeta + 1) * k] = mzeta * k;
3

4 // the recovery kernel
5 uint64_t recovery_kernel(int *phitmp , int mzeta , ←↩

int k) {
6 return (uint64_t)(phitmp + ( mzeta + 1 ) * k);
7 }

Figure 1: A sample recovery kernel.

costly in terms of lost opportunities (batch job slots), lost compu-

tation (everything since the last checkpoint) and I/O overheads

(repeatedly writing checkpoint files). These costs are particularly

significant for massively parallel jobs [13, 15, 30]. Reliance on C/R

means that a job which suffers a transient fault will be killed and

must be resubmitted, having to wait in the job queue before it can

continue execution. Once running, the job must first load the saved

state from a checkpoint, which would involve slow I/O operations

and then redo calculation that was lost before it can get to the

point where the failure occurred. However, since transient faults

only impact the hardware temporarily, i.e., for a few cycles, more

advanced techniques might mask the fault at the application level,

allowing the application to continue the normal operations when

their corrupted state is repaired. In this paper, we argue that, while

the C/R is still necessary in many circumstances (e.g., power fail-

ures, job termination, etc.), soft failures can often be handled with

a lightweight resiliency mechanism, which could help to mitigate

the overall overheads of the resilience mechanism in HPC systems.

Specifically, we propose CARE, a lightweight and compiler-

assisted technique to recover processes of scientific applications

from soft failures. CARE is designed for recovering errors from

computing logic units, assuming that memory areas are protected

with ECC. Upon a failure, CARE will attempt to diagnose and re-

pair the corrupted state for the failing process on-the-fly through

replaying related computations, such that applications can continue

their executions instead of being simply terminated. CARE is in-

spired by two insights we observed from scientific applications and

our study about the manifestation of soft failures (See Section 2):

(1) The majority of soft failures would manifest via hardware

traps. Specially, as much as 98.95% of soft failures evidence

themselves by causing a SIGSEGV because of invalid memory

access. This is because many scientific applications contain

features like stencil codes, or otherwise involve complex

address computations to access neighbor values.

(2) Most soft failures would manifest within a few dynamic

instructions. Hence, the original raw data used for array

location computations remains uncontaminated, and can be

used to recompute the corrupted state.

Based on the above insights and the predominance of soft failures

manifesting as invalid memory accesses, CARE’s approach is to

build a set of recovery kernels (one per memory access instruction)

that can recompute appropriate addresses for failed dereferences.

CARE consists of two components: a front-end, Armor, for con-
structing aforementioned recovery kernels, and a runtime system,

Safeguard, for diagnosing the failure and repairing the corrupted

architecture state when a soft failure happens. Armor is a LLVM

pass, and works on LLVM IR representation. For each memory

access instruction,Armorwill construct a recovery kernel by strate-
gically extracting instructions related to its address computation.

A recovery kernel is simply a standard function which mirrors the

address calculation operations of a portion of the application. Upon

detection of a memory fault, the runtime system Safeguard will

execute the recovery kernel with the uncontaminated inputs to

recompute the memory references. An example of recovery kernel
is demonstrated in Figure 1. This kernel computes the address for

phitmp[(mzeta + 1) ∗ k], taking phitmp, mzeta and k as parame-

ters. CARE will fetch their unmodified values from the process

to execute the kernel thereby leading to the correct address. In

short, CARE relies on the availability of such values which are

typically found in persistent locations such as constant pointers

or memory or register values of instructions unmodified by the

fault. To minimize memory overheads, recovery kernels for an ap-

plication are compiled into a stand-alone shared library, which will

be loaded dynamically by Safeguard when a crash-causing error

is detected. Safeguard provides recovery services by installing a

signal handler for SIGSEGV. Upon a failure, Safeguard will be in-

voked to diagnose which instruction caused the invalid memory

access, and will disassemble the instruction to determine which

operand is referring to a memory address. Based on the address

of the instruction, it will then search, load and execute the related

recovery kernel to recompute the accessed memory address for the

instruction, and update the related operand. Safeguard is designed

to be as transparent as possible to applications and requires no

instrumentation or modification to applications’ source code. It is

implemented as a shared library that can be automatically loaded

through setting the LD_PRELOAD environment variable. Because

Safeguard is not activated unless a crash-causing fault occurs, the

small load-time overhead of installing a signal handler and the tiny

memory overhead for storing the signal handler are its only impact

on an application’s execution if a fault does not occur.

This paper makes the following contributions:

• We propose CARE, a new failure recovery strategy for sci-

entific applications to survive soft failures. CARE exploits

hardware detection of memory access violations to repair

crashed architecture states on-the-fly by replaying compu-

tations that are extracted from applications. CARE is light-

weight. Except requiring some offline code analysis effort for

building recovery kernels, CARE incurs almost zero run-

time overhead and fixed 27MB memory overheads during

the normal execution of applications.

• To motivate the design of CARE, we studied the manifesta-

tion of soft failures in modern scientific applications through

empirical instruction-level fault injection experiments. We

classified the soft failures based on hardware trap symp-

toms, and examined their manifestation latency measured

in terms of number of dynamic instructions. The results of

this empirical study lead to the design of CARE.
• We designed and implemented CARE based on the LLVM

framework and the Linux system. While more engineering

work is needed to support -O2/-O3 optimizations, our proto-

type ofCARE is a solid step towards a lightweight resilience

mechanism for soft failures.
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Table 1: Scientific workloads from different scientific domains and implementing different algorithms

Workload Language Description

HPCCG C++ A simple conjugate gradient benchmark code for a 3D chimney domain on an arbitrary number of processors.

CoMD C

A reference implementation of typical classical molecular dynamics algorithms and workloads as used in

materials science.

miniMD C++

A simple, parallel molecular dynamics (MD) code. It performs parallel molecular dynamics simulation of a

Lennard-Jones or a EAM system

miniFE C++

a Finite Element mini-application which implements a couple of kernels representative of implicit finite-element

applications. It assembles a sparse linear-system from the steady-state conduction equation on a brick-shaped

problem domain of linear 8-node hex elements. It then solves the linear-system using a simple un-preconditioned

conjugate-gradient algorithm

GTC-P C

A 2D domain decomposition version of the GTC global gyrokinetic PIC code for studying micro-turbulent core

transport. It solves the global, nonlinear gyrokinetic equation using the particle-in-cell method.

• We evaluated CARE with 4 scientific workloads and with

up to 3072 cores. The results show that, on average, CARE
can recover about 84% of soft failures for the evaluated work-

loads within dozens of milliseconds, allowing parallel appli-

cations to finish their jobs with almost no delays even when

crash-causing errors happen during their execution. We also

present preliminary evaluation results for BLAS, showing
that CARE can support for failure recoveries in libraries

with a high coverage rate and negligible performance hit.

The rest of paper is organized as follows: Section 2 introduces the

motivation for CARE and explains why it is important for many

scientific applications; Section 3 and Section 4 present the design

and prototype of CARE. Next, evaluation results are presented in

Section 5, and the related state-of-the-art studies are discussed in

Section 6. Finally, we present our conclusion in Section 7.

2 THE RATIONALE BEHIND CARE
In this section, we will first study how are soft failures typically

manifested from transient faults, and present the insights we ob-

served. We then discuss a common feature of scientific applications

that motivated the design of CARE.

2.1 The Manifestation of Soft Failures
With increasing concerns about transient faults from HPC commu-

nities, a solid understanding about the manifestation and propa-

gation of transient faults is key to building an efficient resiliency

mechanism. Several recent papers [3, 9, 23] have studied the impact

of transient faults on scientific applications leveraging empirical

fault injection experiments. While all of these studies point out a

need for an efficient application level resilience mechanism against

soft failures for scientific applications running on future extreme-

scale systems and some, such as [2], examine the propagation of

SDCs, none provided quite the insights necessary for devising ef-

ficient mechanisms for fault recovery. In their studies, they treat

applications as black-boxes. In particular, they do not provide ade-

quate information about how soft failures manifest and propagate

inside applications, which is critical for building application level

resiliency mechanisms. In this section, however, we focus on ex-

ploring how transient faults manifest, propagate and lead to soft

failures (crashes). We are specially interested in: 1) determining the

major causes/symptoms of soft failures; and 2) the latency of their

manifestation in terms of number of instructions executed from

the injection point to the crash point. We built a new instruction-

level fault injection tool which allows us to track the propagation of

faults from instruction to instruction. Our method first injects faults

into target operands of randomly selected dynamic instructions.

The faults are then allowed to propagate while a trace is captured

and analysed. We performed empirical fault injection experiments

on five representative scientific workloads (described in Table 1),

and analyzed the injections that led to soft failures to find com-

mon patterns that can be exploited by a recovery mechanism. These

workloads are from different scientific domains e.g., plasma physics,

molecular dynamics, etc., and implementing different algorithms,

such as Lennard-Jones potential, embedded atom model, and conju-

gate gradient. For each workload, we performed 10 000 injections

based on the single-bit-flip fault model. In the rest of the section,

we will detail the methodology of experiments, and the insights we

gleaned from this study.

2.1.1 Methodology. We build the fault injection tool with GDB

and Python. The tool at runtime attaches itself to the target process

randomly, and then injects a fault to the “destination" operand of

the instruction at the attachment point. A “destination" operand is

one of architecture states, e.g. a register, or a memory cell, that is

updated by the instruction. We simulate transient faults from the

CPU logic by randomly flipping a bit of the value in the “destination"

operand.
1
As done in previous studies [3, 16], we chose a single-bit-

flip fault model since it is a conservative way to estimate the causes

and the latency for soft failures, considering that multi-bit-flip

faults are more likely to incur soft failures with lower latency than

single-bit-flip faults [9]. For careful readers who are interested in a

multi-bit-flip model, please refer to Appendix Double-bit-flip Model.

We utilized capstone[33], an instruction disassembly framework,

to disassemble the instruction and get its semantic information for

identifying destination operands. The fault is injected at the point

right after the instruction is executed, then execution is continued,

tracking fault propagation by recording its execution path. For each

run of an application, only one injection is performed. The trace of

instructions that propagate the fault is then analyzed.

1
Where the destination operand is implicit, e.g. X86 idiv %ecx which divides the value

in %edx : %ead by %ecx and store results in %eax and reminder in %edx , one of
the implied destinations, e,g, %eax , is selected.
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Table 2: The overall outcomes of fault injections

Workloads Benign Soft Failure SDC Hang

HPCCG 3118 3409 3472 0

CoMD 6433 2439 1120 8

miniFE 5073 3518 1376 9

miniMD 951 4065 4984 0

GTC-P 6875 1644 1479 2

Table 3: Breakdown of soft failures based on symptoms

SIGSEGV SIGBUS SIGABRT Other

HPCCG 3322 32 22 33

CoMD 2195 57 41 146

miniFE 3447 51 6 35

miniMD 4028 6 25 6

GTC-P 1196 49 375 24

Table 4: Latency distribution for soft failures

Latency (Instructions)

≤ 10 11 ∼ 50 51 ∼ 400 > 400

HPCCG 99.09% 0.482% 0.602% 0.301%

CoMD 64.15% 23.57% 7.43% 4.85%

miniFE 48.03% 37.15% 12.4% 2.407%

miniMD 53.65% 22.09% 0.03% 24.23%

GTC-P 52.68% 28.76% 9.7% 8.86%

Table 5: The percentage of memory access instructions in-
volvingmultiple computations in their address calculations,
and average number of involved operations

HPCCG CoMD miniFE miniMD GTC-P

No. Insts 91.49% 94.05% 94.08% 89.22% 86.85%

Avg. No. ops 4.62 5.6 3.04 2.96 3.60

2.1.2 Results and Insights. We categorized the general outcomes

of injections into 4 groups: Benign, Soft Failure, SDC, and Hang. A

transient fault is benign (or in short vanishes without causing any

change in execution) if it doesn’t have impact on the application.

In such cases, the faulty value could either refer to an incorrect but

valid memory location containing the same value to the original

memory location, or its effect is masked by a program operation

(e.g., min/max operator that masks injections max/min operand, or

bit-wise logical operation that suppresses most or least significant

bits). Otherwise, it will either kill a process (Soft Failure), lead to

incorrect outputs (SDC), or result in a hang state where there is

no progress on execution. As presented in Table 2, even though

majority of faults are benign, around 30.15% of themmanifest as soft

failures, and 24.86% of them lead to SDCs. While faults happening

in FPU are more likely to cause SDCs, the faults manifested in ALU

1 for (i = ipsi_in1; i < ipsi_out1 +1; i++){
2 for (k = 0; k < mzeta +1; k++) {
3 phitmp [( mzeta + 1) * (igrid[i] - igrid_in) + k] =
4 phitmp [( mzeta + 1) * (igrid[i] + mtheta[i] - ←↩

igrid_in) + k];
5 }
6 }

Figure 2: Stencil Code Structure

instructions are more likely to lead to soft failures. There has been

a significant amount of work on detecting SDCs but soft failures

that cause application crashes have received less attention. Once

an application crashes, it needs to be restarted incurring costly

recovery operations using check-pointed values.

Table 3 breakdowns the soft failures based on symptoms. It shows

that, most (72.75% ∼ 98.95%, 91.45% on average) of soft failures

manifest as SIGSEGV, typically because they corrupt address calcu-

lations and lead applications to access invalid memory locations.

In addition, Table 4 presents the latency distribution for single-bit-

flip model. As it shows, the vast majority of soft failures (> 83%)

were manifest within 50 or less dynamic instructions, with more

than half of them manifesting within 10 dynamic instructions. We

believe such low-latency manifestation implies that the original

values (stored in registers or memory) which were involved in the

address computation were likely to be intact during this latency

window, and that it might be possible to recover the calculation

and essentially mask the fault by creating mechanisms to access

these original values to recompute the effective address (which is

destroyed due to the fault). Based on these two insights, CARE is

designed specially to protect memory access instructions. During

the compilation of applications, it will build a recovery kernel for

each memory access instruction by cloning its address computa-

tions. This kernel will then be utilized to recompute the address

when the instruction is contaminated by a fault.

2.2 Structure of Scientific Applications
CARE is directly motivated by the complex address calculations

that exist inside many scientific applications. For example, many

scientific applications contain stencil codes, which are a class of

iterative kernels. They store scientific data in a set of arrays (or

vectors), and update their elements according to some fixed pat-

tern using neighboring array elements. Such stencil pattern of data

access is repeated for each element of the array. Due to this ac-

cess pattern, applications have to maintain several data structures

(mainly arrays) for storing the neighbor information. Therefore, to

update an element in scientific data arrays, some amount of address

calculation is required to access neighbor cells. Figure 2 presents

an example code from GTC-P. It involves non-trivial address calcu-

lations when accessing an array element in phitmp, including 3 or

4 additions, 1 subtraction, and 1 multiplication. For the evaluated

scientific workloads, as shown in Table 5, some large percentage of

memory accesses (generally 86.85% ∼ 94.08%) have multiple binary

operations in their address calculations; and each memory access

instruction, on average, would involve 2.96 ∼ 5.6 binary operations.

In addition, inside these applications, some variables used in the ad-

dress calculation are infrequently updated during their executions,

4
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Figure 3: Overall architecture of CARE

once every few time steps or even unchanged during the whole

execution. Consider the GTC-P code in Figure 2 for example, iдrid ,
mtheta are never updated after they are initialized, and iдrid_in,
mzeta are unchanged when executing the loop. Because of the com-

plexity of the address computations and the infrequently updated

raw data for the computations, the invalid-memory-access errors

due to transient faults are recoverable with a high probability for

these situations. For example, if a failure manifests when accessing

phitmp[(mzeta + 1) ∗ (iдrid[i] − iдrid_in)+k], the fault could have
happened when updating i,k or the rest of computation, such as

mzeta + 1. While the prior cases are likely unrecoverable, the later

cases are definitely recoverable. As comparison, a failure which

occurs when accessing phitmp[i] is less likely recoverable since the
failure would imply a corrupted value of i , and the likelihood of the
correct original value for that still existing is potentially quite small.

Said another way, a failure manifesting in an address calculation

which involves a large number of temporaries is naturally more

likely to be recoverable than one which does not.

3 DESIGN AND PROTOTYPE OF CARE
Given the observations above, we designed theCARE environment

to focus on recovery from SIGSEGV faults. Here, we first depict the

overall architecture of CARE, and then dive into the design details

of each component.

3.1 Overview
CARE is a compiler-assisted soft failure recovery mechanism for

scientific applications. It is designed to help such applications sur-

vive soft failures with negligible overheads. As presented in Figure 3,

CARE consists of two components: a front-end Armor and a run-

time system Safeguard. Armor constructs recovery kernels for

memory access instructions during the compilation of applications.

To minimize the overhead of CARE, recovery kernels are compiled

into a stand-alone shared library, and will be loaded by Safeguard
as needed to repair invalid memory access errors. At the same time,

Armor also generates a Recovery Table which contains informa-

tion about how to access and execute a recovery kernel. Safeguard

1 %idxprom156 = sext i32 %i144.0 to i64
2 %arrayidx157 = getelementptr inbounds i32 , i32* %7,←↩

i64 %idxprom156
3 %44 = load i32 , i32* %arrayidx157 , align 4
4 %arrayidx159 = getelementptr inbounds i32 , i32* %8,←↩

i64 %idxprom156
5 %45 = load i32 , i32* %arrayidx159 , align 4
6 %add160 = add nsw i32 %44, %45
7 %sub161 = sub nsw i32 %add160 , %29
8 %mul162 = mul nsw i32 %add66 , %sub161
9 %add163 = add nsw i32 %mul162 , %k.0
10 %idxprom164 = sext i32 %add163 to i64
11 %arrayidx165 = getelementptr inbounds double , ←↩

double* %12, i64 %idxprom164
12 %46 = load double , double* %arrayidx165 , align 8
13 %sub169 = sub nsw i32 %44, %29
14 %mul170 = mul nsw i32 %add66 , %sub169
15 %add171 = add nsw i32 %mul170 , %k.0
16 %idxprom172 = sext i32 %add171 to i64
17 %arrayidx173 = getelementptr inbounds double , ←↩

double* %12, i64 %idxprom172
18 store double %46, double* %arrayidx173 , align 8

Figure 4: LLVM IR Code for the example code in Figure 2.

itself is designed and implemented as a shared library as well, and

is automatically loaded by setting the LD_PRELOAD environment

variable. Upon loading, it will overload the default SIGSEGV signal

handler of applications to provide recovery service. Besides such

initialization work, Safeguard is not activated unless a soft failure

occurs, therefore it will incur almost negligible overheads during

the normal execution of applications. Upon a invalid memory ac-

cess error, Safeguard will be activated to diagnose the failure, find

the recovery kernel and execute the kernel to repair the corrupted

architecture state. Although the overall idea of CARE is straight-

forward, it comes with several challenges. In the rest of the section,

we will present the design details for each component, as well as

challenges we met and addressed in detail.

3.2 Armor
Armor is a compiler pass based on the LLVM framework [26]. It

works on LLVM IR, a light-weight low-level intermediate repre-

sentation of programs. There are several existing tools, such as

Clang [10], Flang [17], and DragonEgg [14], which can be used

to compile applications into LLVM IR codes. Therefore, CARE is

relatively independent of programming languages, and can support

a majority of scientific applications written in C, C++ or FORTRAN.

Figure 4 shows an example LLVM IR code for the stencil code

in Figure 2. LLVM IR is in static single assignment (SSA) form. Its

syntax is similar to MIPS assembly language, except that LLVM IR

has unlimited virtual registers. Each LLVM IR instruction defines a

new value which is used by other instructions. In LLVM IR, memory

accesses are issued explicitly through either LoadInst or StoreInst
instructions. For these memory access instructions, Armor starts
from their address operands and works backwardly to identify in-

structions involved in their address computations. It then clones

and organizes these instructions as a recovery kernel, represented

as a normal function in LLVM IR code. Armor will construct a
recovery kernel for each memory access instruction, except those

directly loading from (or storing to) an AllocaInst (representing a
local variable) or a GlobalVariable, since they don’t involve any

5
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1 bool isExpandable(Value *V, Value *MemAccInst) {
2 if (isa <AllocaInst >(V) || isa <GlobalVariable >(V)
3 || isa <Argument >(V) || isa <PHINode >(V) || ←↩

isComplexCalls(V))
4 return false;
5

6 auto operands = getOperands(V);
7 for (op: operands) {
8 if (! isLiveAt(op , MemAccInst) && !isExpandable(←↩

op , MemAccInst)) return false;
9 }
10 return true;
11 }
12

13 void getParamsAndStmts(Value *MemAccInst ,
14 vector <Value *> &Params ,
15 vector <Value *> &Stmts) {
16 vector <Value *> Workspace;
17 Value *Addr = getAddrOperand(MemAccInst);
18 Workspace.push_back(Addr);
19 while (! Workspace.empty ()) {
20 Value *V = Workspace.back ();
21 Workspace.pop_back ();
22 if (isExpandable(V)) {
23 Stmts.insert(V);
24 auto operands = getOperands(V);
25 for(op: operands) {
26 if (isa <ConstantData >(Op)) continue;
27 Workspace.insert(Workspace.begin (), op);
28 }
29 } else Params.insert(V);
30 }
31 }

Figure 5: Pseudo code for extracting address computations

address computations. Recovery kernels for an application are gen-

erated into a separate LLVM module, which is then compiled into

a stand-alone shared library.

In general, a recovery kernel can repair transient faults that oc-

cur in instructions from which it is cloned, defining the Coverage
Scope for that particular kernel. However, compiler optimization

interacts with coverage scope in complex ways. To make a recovery

kernel cover more instructions, Armor should clone as many in-

structions as possible. However, Armor cannot aggressively copy

all computations. It will not only incur huge overheads, but also

could reduce the fault coverage ofCARE due to code optimizations

in modern compilers, which could make values that are arguments

for recovery kernels unavailable at the memory access instruction.

Armorwill stop the process of extraction when it meets predefined

Terminal Values, where the intuition behind Terminal values
is that they are guaranteed to be found in registers or memory. A

formal definition of Terminal Values appears further down be-

low. Informally, it is very critical to find correct Terminal Values
for recovery kernels, since they are inputs to the kernels. When

Safeguard is activated to repair a fault, these values must be ex-

tracted from the process and then provided to the recovery kernel

subroutine in order to recreate the correct address. This requires

that those values be accessible and not optimized away. However,

Armor constructs the recovery kernel at LLVM IR level, and some

of the LLVM IR values, like many variables in high-level languages,

could be optimized awaywhen they are compiled intomachine code,

particularly when the optimization flag is enabled. To address this

challenge, we leveraged liveness analysis during the construction of

recovery kernels. For a memory access instruction, the arguments

of its recovery kernel should be live at its position. By definition, a

variable is live at a particular point in the program if its value at

that point will be used along at least one path that originates at

the given program point. In particular, we leverage the following

observation which is true about lowering of IR into machine code:

if a value is live at a memory access instruction and its use is non-

local (outside the current basic block), it is not optimized away by

machine dependent passes (such as instruction selection etc) when

the LLVM IR codes is lowered into the machine code. Therefore

such a value is eligible as a parameter to the recovery kernel. Based

on this insight, Armor leverages the algorithm in Figure 5 to ex-

tract address related computations for a memory access instruction.

It will stop the process of extracting instructions when it meets

one of the following LLVM IR instructions/values, since they imply

start-points of the computation:

(1) An AllocaInst which represents an variable allocated on the

function stack.

(2) AGlobalVariablewhich represents a global variable allocated
on the data section of process.

(3) An Argument which represents a function parameter.

(4) A PHINode that represents a loop induction variable.

(5) A CallInst calling a complex function. We treat the CallInst
differently based on the complexity of the callee. Armor
will stop the process of extraction if the callee updates global

variables, arguments passed to it (including memory regions

pointed by arguments), or allocates new memory regions. In

contrast, if the callee is a simple math operator, e.g., sqrt, it
will be treated as a normal binary instruction.

(6) Terminal Value. A Terminal Value for a memory access

instruction I , is a LLVM IR instruction/value which is live at

I , with at least one of its operands is dead at I and the dead

operand cannot be computed from other live instructions/-

values. Secondly, as stated earlier, the LLVM value which is

live should have a non-local use outside the current basic

block(which will ensure that the machine-dependent passes

will not eliminate or fold the value making it unavailable). Fi-

nally, if every operand of a LLVM instruction/value is live or

can be computed from other live values, Safeguard can con-

tinue the extraction of computations to extend the coverage

scope for the kernel.

For illustration, Figure 6 presents a computation-dependency

graphs among a set of variables. It shows the address computations

for the LoadInst in node 1. To build a recovery kernel, Armor will
start from node 2 and check liveness of base and o f f set . Since
the o f f set is live at node 1, and base can be computed from a live

variable дtc_input in node 9, it will continue the extraction and

take the instruction in node 2 as a statement in the recovery kernel,

and then evaluate node 3 and node 11. The instructions in node 3

and node 11 will be copied as statements too, since bothmul and
call are live at node 1, and densityi can be computed from node 9.

Node 10 is handled similarly to node 11. And node 4 and node 5

are then evaluated respectively. For node 4, its valuemul will be
considered as a parameter of the recovery kernel, since its operand

sub is not live at node 1, and it cannot be also computed from other

live variables. Similarly, for node 5, Armor will stop the search

6
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arrayidx = base + offset

d5 = load arrayidx

offset = mul + callbase = load densityi

densityi = gtc_input + 8 mul = sub + tmp call = abs_min(wtion, delz)

Sub = jtion + igrid tmp = 1 + mzeta

jtion = … igrid = …
mzeta = …

wtion = mzeta + 1
delz = …

live variables:
1. arrayidx
2. gtc_input
3. mul
4. call
5. mzeta
6. delz
7. offset
8. jtion

gtc_input = …

… = gtc_input
… = mul
… =call
… = mzeta
… =delz
… = offset

……

Memory Access Instruction

Live Variables

Terminal Values

Dead Variables

1

2

Arguments

3

5

6

7
8

4

9

10

11

12

Figure 6: The illustration of constructing recovery kernels.
mzeta and delz are computed from variables dead at node 1

until it meet node 6 and node 7. Finally, the recovery kernel for the

memory access instruction in node 1 will clone the instructions in

node 2, node 3, node 5, node 10, node 11, and node 12 as statements

and take the values in node 4 (mul ), node 6 (delz), node 7 (mzeta),
and node 9 (дtc_input ) as parameters of the kernel.

3.3 Recovery Table
In addition to the recovery library containing the recovery kernel

subroutines, Armor also generates a Recovery Table to describe

recovery kernels for Safeguard. It contains information about how

to access a recovery kernel and which are the parameters to the

kernel. The Recovery Table is a key-value table as shown in Ta-

ble 6. For each recovery kernel in the recovery library, Armor will
register an entry for it in the table. The recovery table contains

three pieces of information:

(1) key, which represents an instruction. Each memory access

instruction should be associated with a unique key, which

will be used to retrieve the related recovery kernel.

(2) symbol, which represents a recovery kernel. The symbol

could be simply the function name of the recovery kernel. It

will be used to load the actual implementation of the recovery

kernel from the recovery library.

(3) parameters, which describes the inputs required by the

kernel. They are used to retrieve expected input values from

the corrupted process.

Because Armor and Safeguard work on different representa-

tions of applications, the Recovery Table plays an important role

in synchronizing the information between them. Armor relies on
it to inform Safeguardwhich recovery kernel to use when a partic-

ular memory access instruction failed, and the parameters required

to execute that kernel.

There are two challenges to be addressed here. First Armor
and Safeguard must agree on the selection of the key, which is

closely associated with the memory access instruction. For a mem-

ory access instruction in LLVM IR and its corresponding assembly

instruction in machine code, both Armor and Safeguard should

Table 6: Recovery table for describing recovery kernels

key symbol parameters

key1 care_recovery_k1(int16, int, int) a, b, c

key2 care_recovery_k2(float, int32) m, n

key3 care_recovery_k3(int8, int64) d , e

be able to generate the same key to point to the recovery kernel.

Armor must generate a key at compile-time and associate it with

the recovery kernel; meanwhile, Safeguard be able to generate the

same key using the fault location, and use it to find the recovery

kernel. Similarly, parameters are keys to the required input values

of the kernel. Safeguard relies on them to retrieve input values for

the kernel from the process’s address space.

Intuitively, the instruction address is a good candidate for the

key, since each instruction has unique address. It is stable, and

easy to get for Safeguard. However, it is not available to Armor,
since it is not generated until the code generation phase. Relying

on it would require the modification of the code generation passes

in modern compilers. To avoid this complexity, we leveraged the

debug information subsystem of modern compilers, which is used

to encode source-level program information for machine code. Al-

though CARE leveraged this subsystem, it doesn’t have to rely on

the debug data generated by compiler. In debug data of a program,

each instruction is associated with location description, which con-

tains the source file name, the line number and the column number.

CARE takes the tuple of (f ile, line, column) as the key to an in-

struction, since they are accessible both in LLVM IR and in machine

code. Specially, CARE doesn’t require the real debug data of the

program, since it won’t map instructions to original source-code

statements. CARE only requires that the debug data is unique for

each memory access instruction. Armor can generate a fake debug

data for each memory access instruction if the debug flag is not

enabled. On the other hand, if debug flag is enabled during the com-

pilation,Armor needs to resolve the conflicts for some instructions

that end up sharing the same debug data. As an additional com-

plexity, since x86_64 assembly supports CISC-style memory access

in computations (e.g., “add (%rax, %rcx, 8), %rdx" reads data from

memory and adds it to %rdx), some of memory access instructions

in LLVM IR might be merged with the related binary instruction

during the code generation. Hence, Armor also attaches the debug
information for memory access instructions to the instructions that

directly use their results.

The use of debug mechanism also addresses the second chal-

lenge about retrieving arguments for a recovery kernel. For each

parameter of a kernel, Armor will create a variable description for

it by simply assigning a unique name for each parameter. Based

on the variable description, the debug information subsystem of

the compiler will automatically generate a debug information en-

try (DIE) to describe the variable in machine code, as shown in

Table 7. A DIE contains several attributes which are associated

with the variable. An important attribute is the “DW_AT_location",

which describes the location for a variable. It contains 2 pieces

of information, including address ranges and corresponding loca-

tion of the variable. For example, item [0] in Table 7 describes that

the variable zion3 is located in a register if PC address resides in

7
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Table 7: An example of Debug Information for a local vari-
able. It is simplified for ease of reading.

DW_TAG_Variable

DW_AT_location

<loclist with 2 entries follows>

[0] 0x422cd4∼0x422d3c: DW_OP_reg11

[1] 0x422d3c∼0x422fe4: DW_OP_breg7+4

DW_AT_name zion3

DW_AT_decl_file “/path/to/source/file.c"

DW_AT_decl_line 156

Algorithm 1 The pseudo code for repairing a corrupted process

function safeguard(siдno,pcontext )
Addr ← getAddrOfInstruction(pcontext)
key ← getSrcInfo(Addr)
kname,params ← searchRecoveryTable(key)
if no kernel f ound then

exit(signo)

end if
lib ← dlopen(libRecovery)
k f unc ← dlsym(lib, kname)
pvalues ← getParamsValues(params)
value ← kfunc(pvalues)
operand ← getAddrOperand(Addr)
update(operand,value)

end function

[0x422cd4, 0x422d3c), and the item [1] describes that the variable
is located on the stack at the offset 4 to the frame point register if

PC address is in [0x422d3c, 0x422f e4).

3.4 Safeguard
Safeguard is the runtime system ofCARE, providing recovery ser-
vice for applications by setting up and executing recovery kernels

constructed byArmor. Safeguard is built as a shared library, and it

is designed to be loaded automatically by setting the LD_PRELOAD
environment variable. Leveraging the “constructor" attribute in

modern compilers, Safeguardwill add a signal handler for SIGSEGV
immediately after it is loaded. Except this initialization work, Safe-
guard is not activated until a SIGSEGV fault occurs. Therefore, it

has almost zero runtime overhead during the normal execution

of applications. To minimize the memory overhead, Safeguard
only loads recovery kernels when a crash-causing error is detected,

and will immediately release the related memory after the repair.

Upon a failure, the steps taken by Safeguard are shown in Algo-

rithm 1. It first retrieves the address for the instruction that issued

the SIGSEGV signal. Based on the address, Safeguard will read

the line table of the debug data to get the key for the instruction,

and then use the key to find the appropriate recovery kernel from

the Recovery Table. If successful, it will load the recovery library,

retrieve the kernel implementation, decode the debug data to find

and retrieve values for parameters, and then execute the recovery

kernel. Finally, it will disassemble the instruction, to find its address

operand, and update that operand with the value computed by the

kernel. If the address operand involves both a base register and

a index register, e.g. “mov 8(%rbx, %r8, 4), %eax", Safeguard will

update the index register (%r8) by default, assuming that index reg-

ister is computed more frequently than base register, and are more

likely to experience faults. It will recompute the value for the index

register based on the value in base register, and the value returned

by recovery kernel. Before making the actual update, Safeguard
will check whether the kernel-computed address is the same with

the invalid address accessed by the instruction. The update is per-

formed only if they are different. Otherwise, it implies that the fault

happened to an instruction that is out of the coverage scope of the

recovery kernel, and its argument values are contaminated. CARE
lacks of ability to recover such failures.

2

4 PROTOTYPE
We implemented a prototype of CARE on X86_64 platform and

Linux OS. We implemented Armor based on LLVM 6.0.1. Armor
treated some LLVM CallInst instructions as a normal binary opera-

tors, if they simply call somemathematical kernels, e.g, sqrt, or some

user-implemented functions that don’t update global variables and

arguments. But it doesn’t clone the implementation of these callee

functions, hence, when the recovery kernels are compiled into a

shared library, it is necessary to build them with binary source files

containing the user-implemented simple functions, and link them

with necessary libraries.

On the other hand, Safeguard mainly implements a signal han-

dler for SIGSEGV. It contains a constructor, which will be executed

automatically (by setting LD_PRELOAD) to setup/overload the sig-

nal handler for processes. The benefit of this design is that Safe-
guard doesn’t require source code changes to applications. Safe-
guard computes the address for the failed instruction based on the

location where the failure occurs. Failure can happen to either an

instruction belonging to the application code or to one belonging

to the library code. For a failure occurring on applications’ code

instruction, it will directly use the PC (Program Counter) value

corresponding to the failed instruction as the address of the instruc-

tion, and for a failure that happened in a shared library, the o f f set ,
calculated as PC − base , is used as the address of the instruction.

Here, base is the address at which the library is loaded. This design

is mainly restricted due to the differences in mechanisms in terms of

encoding the debug data for executable binaries versus the shared

libraries. Getting the correct address is the key to retrieve the cor-

rect recovery kernel, and related parameters. Safeguard utilizes

dladdr to diagnose the location of failures. The failure location also

guides the Safeguard to access the correct file for the required

debug data.

In addition, Safeguard relies on the libdwarf [24] library to read

the debug data and the libffi [25] library to execute calls to the

recovery kernel. Since “ffi_call" takes pointers as arguments, the

address of a variable, instead of a value, is retrieved from the process

space. Finally, recovery table is implemented based on google

protobuf-3.6.0 [19], and the MD5 hash of the debug information

tuple (f ile, line, column) is computed with the mhash [28] library

and used as the key.

2
Note that a real segmentation fault resulting from program bug or erroneous input

will fall into this category as well. CARE will declare it non-recoverable and simply

propagate the SIGSEGV.
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Table 8: Statistics of recovery kernels

GTC-P HPCCG miniMD CoMD

Num. of kernels 2786 255 2611 1143

Avg. Instructions (IR) 19.18 2.51 8.2 2.63

Normal Compilation (seconds) 2.322 3.575 4.215 1.486

Armor Overhead (seconds) 226.89 35.538 57.528 14.655

5 EVALUATION
We mainly evaluated CARE with 4 scientific workloads including

GTC-P, HPCCG, miniMD and CoMD as described in Table 1. We

skipped miniFE since it heavily relies on the C++ STL library which

is not fully supported in current prototype. For each workload, the

compile-time overheads spent on building recovery kernels and the

statistical information about the recovery libraries are presented

in Table 8. As shown in the table, Armor would take tens of sec-

onds for HPCCG, miniMD, and CoMD, or hundreds of seconds for

GTC-P, to analyze the program and construct the recovery kernels.

More than 90% of the overheads were spent on liveness analysis.

Despite this offline compile-time overheads shown, CARE incurs

almost zero runtime overhead during the normal execution of the

workloads without faults, since it only calls “sigaction" to register

signal handlers, which takes a few microseconds. And the memory

overheads of CARE is fixed to 27MB (< 1% for evaluated work-

loads), which is mainly occupied by partial of LLVM and protobuf

libraries used by Safeguard for encoding/decoding recovery tables.

We believe this overhead is negligible for scientific applications that

are typically with gigabytes of memory footprints. In this section,

we mainly focus on evaluating the fault coverage and recovery time

of CARE. For these workloads, faults are injected to instructions

from applications
3
. In the rest of the section, we will introduce

the evaluation methodology and environment, present evaluation

results, and discuss the advantages and limitations of CARE.

5.1 Methodology
We evaluated CARE on an X86_64 platform with up to 64 compute

nodes, with each node equipped with 48 cores (3072 total cores)

and 128GB of memory. We performed fault injections to emulate

transient faults with a methodology similar to that introduced in

Section 2, except that we updated the method of randomly selecting

a dynamic instruction, such that injections are only performed to

instructions from the application itself and not to library code. In

the updated tool, we first profiled the number of executions for each

static instruction (from applications only) using the Intel Pin tool.

Then we randomly select a static instruction for injection based on

the numerical distribution of their executions. Finally, we generate a

random number based on the executions of the selected instruction

to determine the point at which the fault would be injected. In other

words, a dynamic instruction is approximately represented by a

pair (I ,n), which means the fault will be injected to the instruction I
after it is executed n times. In all, we examined around 1000 ∼ 2000

injections that led to SIGSEGV errors. In the discussions below it is

important to note thatCARE is largely insensitive to the exact fault

3CARE relies on source code to build recovery kernels, and recovery from transient

faults that occur in library code requires the recompilation of libraries from their

source codes leveraging CARE. which is beyond the scope of our current work, IR

recovery binary is the key.

Figure 7: Fault Coverage of CARE.

1 int a, b, c, d, *array;
2 array[a+b+c+d]; // case 1
3

4 a += b;
5 c += d;
6 array[a+c]; // case 2

Figure 8: Code optimization could help extend the coverage
scope for case 2 to the same on for case 1

model in use. Different choices for fault models would likely change

the relative ratios of fault outcomes (such as provided in Section 2,

but if a fault triggers a soft failure, the number of corrupted bits

will not impact CARE’s operation. Only the actual location of the

fault will impact whether or not CARE can recover from it.

5.2 Fault Coverage
CARE is a process recovery technique, which aims to recover pro-

cesses from invalid memory access errors caused by transient faults.

In this subsection, we evaluated the performance ofCARE based on

fault-injection experiments on single process. We evaluated CARE
when applications are compiled with “-O0" (No-opt) or “-O1" (Opt)

flags. To support “-O2" and “-O3", which will perform code vector-

izations, our current prototype still needs extra engineering work

to encode vector-type parameters in recovery tables.

Figure 7 presents the fault coverage ofCARE. On average,CARE
can recover 83.54% of injected SIGSEGV faults, with up to 96% for

HPCCG when it is compiled without optimization. CARE achieved

such high fault coverage mainly due to the fact that majority of

SIGSEGV faults manifest quickly, typically within only a few dy-

namic instructions after they occur. The raw data used in address

computations is less likely to get updated during such a short time

window, especially in the evaluated workloads where they are in-

frequently updated at the algorithm level. Therefore, CARE has a

good chance to recompute the addresses. Despite some variance,

code optimization didn’t introduce significant reduction for the

fault coverage of CARE. For miniMD, it improved fault coverage

by around 7%. this mainly due to code optimization extending the

coverage scope of recovery kernels in the miniMD core. This sce-

nario can be illustrated as follows. Figure 8 shows two memory

accesses. When the code is compiled without optimization, CARE
can recover errors occurring during the computation of a+b+c +d

9
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Figure 9: Recovery time of CARE

for case 1, but can only recovery errors occurring in a + c for case
2 because of the immediate update of a and c in line 6 and 7. Code

optimization helps to optimize the case 2 to be like case 1 by opti-

mizing out unnecessary memory updates. As a result, the recovery

scope of the kernel is extended. Similarly, there is a slight improve-

ment for GTC-P as well. For HPCCG and CoMD, however, code

optimization reduced the coverage by 35% and 21%, respectively.

For HPCCG, which is a relative simple kernel, a significant portion

of dynamic instructions are involved in updating the loop induc-

tion variables after the code optimization, therefore they are more

likely to be selected by our tool to inject faults. More importantly,

because of the code optimization, loop induction variables will be

allocated in registers, and updated in-place. If they are corrupted,

CARE cannot acquire correct values for related recovery kernels,

leaving many faults unrecoverable. For CoMD, however, it is mainly

because recovery kernels don’t have enough coverage scope due to

liveness issues.

It is worth noting that during a recovery of failure, CARE will

not substitute silent data corruptions (SDCs) for failures as is pos-

sible with more heuristic based recovery methods [27]. This is

because the computation of a recovery kernel is based on the raw

data fetched from the process. If raw data is contaminated by a

fault, the recovery kernel will definitely generate a wrong address

which is the same as the one accessed by the corrupted instruction.

Otherwise, CARE is guaranteed to get correct address, since it

exactly clones the computation from applications.

5.3 Recovery Time
Recovery time measures the time required by CARE to recover

from a fault. Clearly a single faulted computation might feed into

several memory access instructions. What might not be intuitively

obvious is that in this situation, Safeguard could be activated sev-

eral times, recovering the effects of each manifestation of the fault.

Figure 9 shows that CARE can recover a process from a SIGSEGV
fault with only a few tens of milliseconds. In fact, only a tiny per-

centage of that recovery time is spent in the generated recovery

kernel. They generally only contain a few instructions related to

address computations and while their use is key to CARE, their
actual portion of the recovery time is negligible. In fact, for each ac-

tivation, more than 98% of the recovery time is spent on preparing

the execution of recovery kernels, including diagnosing the failure,

Figure 10: Parallel jobs can finish the computations without
delays with SIGSEGV recovered by CARE

loading recovery table and recovery library, and retrieving argu-

ments from stalled process. When applications are compiled with

“-O1", the recovery time will be on average increased by around

8% ∼ 17%. This is because, when code is optimized, a single fault

injection is more likely to impact multiple instructions requiring

multiple recover kernel executions. In relative terms, HPCCG tends

to have a lower recovery time because it has a small code base,

hence small recovery table and recovery library.

5.4 Impact on parallel jobs
In this subsection, we examine the impact of CARE on parallel

jobs. We run the workloads with 512 processes and 6 threads on

a cluster with 64 nodes (3072 cores). For each run, we injected a

CARE-recoverable fault to rank 0 of the job. We wrote a wrapper

to PMPI_Init , in which an injection process is created and attached

to rank 0 using ptrace . For a injection point (I ,n), the injection pro-

cess will set a break-point at I , stop the rank 0 after the instruction I
is executed n times, and then contaminate the destination operand

of the target instruction and continue the execution of process. We

performed 100 injections, one injection per-run. Table 10 compares

the execution time of parallel jobs when a SIGSEGV fault occurred

in rank 0 and is repaired by CARE. It shows that, despite some

execution variance across different runs, CARE can almost com-

pletely mask the impact of recoverable SIGSEGV faults to parallel

jobs. It can help parallel jobs to survive invalid memory access

errors caused by transient faults. With the protection from CARE,
parallel jobs when experiencing an invalid memory access error

can finish their computations with almost no delays as compared

to their normal executions. This is due to the low recovery time

of CARE. In comparison, even a small run of GTC-P relying upon

checkpoint/restart would require at a minimum dozens of seconds

(14.367s, 25.946s, or 37.56s on average to recover from a failure if

checkpoint is respectively scheduled every 20, 50, or 75 time-steps)

to recover from a failure, even if some automatic restart mechanism

were available and the new job were to be scheduled immediately.

5.5 Failures in shared library – BLAS
BLAS is a popular linear algebra library written in FORTRAN. It pre-
scribes a set of low-level routines for performing common linear al-

gebra operations, and is widely used in many scientific applications

10
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Table 9: Statistics and Performance for sblat1/BLAS

# Kernels

Normal Compile

time (Sec)

Armor
Overhead (Sec)

Coverage
Recovery

Time

BLAS 10931 6.89 4.973

83.49% 5.7ms

sblat1 187 1.78 1.98

and machine learning workloads. BLAS routines are categorized

into three levels, which correspond to the degree of the polynomial.

In this subsection, its preliminary evaluation results are presented.

We rebuilt the BLAS from its source code (copied from LAPACK-
3.8.0) as a shared library (“libblas.so"). The test program sblat1 (in

“TESTING/sblat1.f") for REAL level 1 blas, which is provided by

the package, was used as the driver to the library. sblat1 is dy-

namically linked to “libblas.so". We randomly injected faults into

either BLAS or sblat1. Table 9 briefly presents the statistics of re-

covery kernels for sblat1 and BLAS, and the performance achieved

by CARE for them. It shows that CARE achieved around 83% cov-

erage with almost negligible overheads. We should point out that

sblat1 only covers 12 REAL level-1 routines, which is a small frac-

tion of procedures provided by BLAS. While a detailed evaluation

for BLAS is currently underway, the preliminary results in this sub-

section demonstrate that CARE effectively supports the recovery

of failures which could occur in libraries with good coverage, small

overheads and recovery times.

5.6 Discussion
As shown in previous results, CARE is a light-weight and effec-

tive failure recovery mechanism for invalid memory access errors

triggered by transient faults. Although it is not designed to replace

the C/R, its high fault coverage rate, low recovery time, negligible

memory overhead and almost zero runtime overhead could help

to relax the frequent checkpoint to be a relatively infrequent one,

thereby reducing the overall overheads of resiliency mechanisms,

and speeding up the execution of scientific applications.

We examined the remaining 16% cases for which CARE could

not provide recovery. In addition to the limited support to C++ STL

library, the other two main reasons were inability to recover induc-

tion variables and limitations on live ranges. Induction variables

always perform in-place updates, and are always put as param-

eters to recovery kernels. If the in-place update for a induction

variable is contaminated by a fault, CARE currently has no ability

to recover the correct value for the variable. On the other hand,

the requirement of live values for parameters strictly restricts the

coverage scope of a kernel, and makes the faults that contaminated

parameters of recovery kernels unrecoverable. As a part of ongoing

work, we are exploring compiler transformations to handle these

cases and further improve CARE’s coverage.

6 RELATEDWORK
Detection and recovery from failures are not new topics in HPC and

other environments [3, 6–8, 16], so there is significant prior work

to consider. In this section, we present a brief survey of studies

most related to CARE.
Studies in [3, 9, 23] examined the impact of transient faults on sci-

entific applications. Their results showed that a significant portion

1 for (i = 0; i < N; i++) {
2 ... = array[f(i)];
3 ptr++;
4 }

Figure 11: An example of exploring equivalent computa-
tion for induction variable recovery. If i is corrupted, and a
SIGSEGV is issued at array[f (i)], the correct value for i can be
derived from ptr if the initial values for ptr and i are known.

of transient faults could manifest as soft failures. This motivated us

to study how soft failures manifest inside scientific applications and

whether there are common features that can be explored to design

an efficient resilience mechanism for them, resulting in the design

of CARE. Georgakoudis et al. [18] and Chang et al. [5] designed

and evaluated new fault injection tools for transient faults. While

these tools are valuable to the community, they are not a good fit

for CARE because they either work on high-level intermediate rep-

resentations (LLVM machine IR) which is inaccurate as compared

binary-level injections, or incur high overheads (3× slowdown)

making it infeasible to run large scale (∼100 000 injections) fault
injection experiments.

BesidesCARE, there are several studies on online recovery from
process failures such that applications can continue their normal

executions. Rx [32] aims to recover from a process failure by rolling

applications back to a previous safe status, and then continuing

its execution with a minor modification to its environment. Rx is

motivated by the observation that many program bugs are asso-

ciated with the setup of process environments, so changing the

environment setup could avoid the crashes. Its techniques could

help handle transient faults by simply replaying the computation

without changing the environment, however its basic operation

requires at least partial application checkpoints which are likely

to have significant cost. RCV [27] is another online failure recov-

ery technique for divide-by-zero (SIGFPE) and null-dereference

(SIGSEGV ) errors. RCV’s approach explores a set of heuristics for

recovery. For instance, it returns zero as the default result of the

divide for divide-by-zero errors, discards invalid write instructions

that accessing near-to-zero addresses and returns 0 for invalid read

operations. These techniques are computationally inexpensive and

may succeed in getting the application to continue, but are likely

to introduce SDCs as a side effect. LetGo [16] shares a similar idea

to RCV, and is specially designed for handling soft failures in scien-

tific applications. Its recovery strategy employs a set of heuristics

too. Upon a failure, it will reset architecture states to a pre-defined

value, and then continue the execution of the application. Obviously

such heuristic based method could lead to SDCs, which is another

challenge problem in HPC community.

In contrast, CARE undertakes a proper recovery process with

regards to the maligned address computation by recomputing it as

per the program semantics and through the use of in-tainted values

by synthesizing a very lightweight function. It develops careful

correspondence mechanism to co-relate the recovery handlers to

the fault causing instruction at runtime. While CARE shares the

similar goal and design to RCV and LetGo in that they all aim to

help applications to survive failures by replacing the default signal
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handler with their own one to provide recovery services, CARE’s
approach is more accurate than others, and will not introduce SDCs.

7 CONCLUSION AND FUTURE WORK
Resilience is projected to be a critical challenge as HPC systems

continue to grow and as individual components continue to shrink

feature size and operating voltages. These technology trends would

make the systemmore susceptible to transient faults caused by such

things as high-energy particle strikes and heat flux. Transient faults

could not only lead scientific applications to generate incorrect

outputs, but also crash the execution of a process, killing the entire

parallel job as a result. This requires the application to be restarted

from a latest checkpoint, and the lost computation to be redone

before continuing the execution. The presence of such failures could

also necessitate more frequent checkpoints than would otherwise

be desirable, leading to significant overheads.

In this paper, we present and evaluate CARE, a lightweight

and compiler-assisted error-recovery mechanism that allows pro-

cesses to survive crashes caused by certain transient faults, such

that the applications can continue their execution. Based on our

experimental studies, we identified SIGSEGV as a major symptom to

soft failures, and CARE is designed for repairing SIGSEGV errors.

For each memory access instruction that involves complex address

computations, CARE first builds a recovery kernel by cloning its

address computations. At runtime, it maps the fault causing instruc-

tion to a failure recovery handler which recomputes the address

and masks the fault. We evaluated CARE with four scientific work-

loads. During their normal executions, CARE incurs almost zero
runtime overhead and fixed 27MB memory overheads, and it can

recover averagely to 83% SIGSEGV faults within a few milliseconds.

We also demonstrated the impact of CARE on parallel jobs at

the scale of 3072 cores. Due to the low-latency recovery mechanism

of CARE, the parallel jobs can finish their computations as normal

with almost no delays, even if a crash-causing error occurred and

repaired by CARE during their executions. These results show that

CARE can allow applications to survive some classes of transient

failures with little or no overhead, which is of particular benefit in

HPC scenarios where the cost of application failure is high. CARE
could also improve MTBF and therefore could open a door towards

research on relaxation of the checkpoint frequency which could

have significant resource and performance implications.

In our future work, we plan to improve the CARE in the di-

rections of: 1) exploring equivalent computation in programs to

recover induction variables (See Figure 11); 2) extending its runtime

to support instructions common in high level optimizations; 3) im-

proving its support for libraries, especially those for which source

code might be unavailable, e.g., C++ STL, with inter-procedure

analysis and stack unwinding.

A DOUBLE-BIT-FLIP MODEL
For careful readers who are interested in the performance ofCARE
under the multi-bit-flip fault model, this section briefly presents

experimental datawith the double-bit-flip fault model.We leveraged

the same tool from section 2 and section 5, except that, for each

injection, we randomly flipped two bits rather than one in the

injection target.

Table 10: The overall outcomes (double-bit-flip model)

Workloads Benign Soft Failure SDC Hang

HPCCG 3020 4244 2710 26

CoMD 5271 4392 337 0

miniFE 4861 3643 1247 208

miniMD 11 4556 5424 9

GTC-P 6539 2474 985 2

Table 11: Breakdown of soft failures (double-bit-flip model)

SIGSEGV SIGBUS SIGABRT Other

HPCCG 4236 2 1 5

CoMD 4074 53 9 256

miniFE 3511 75 34 23

miniMD 4362 84 32 78

GTC-P 2050 37 362 25

Figure 12: Fault Coverage (double-bit-flip model)

Table 10 and Table 11 present the overall outcomes of injection

experiments. On average, 38.49% of transient faults were mani-

fested as soft failures with 82.86% ∼ 99.81% of them manifested

as SIGSEGV, which are a little bit higher than single-bit-flip fault

model. In double-bit-flip fault model, soft failures have shorter man-

ifestation latency than in single-bit-flip model, and all of these soft

failures are manifested within 10 dynamic instructions.

Finally, Figure 12 presents the fault coverage of CARE with the

double-bit-flip fault model. On average, it achieved 82.34% coverage

for the evaluated workloads. As compared to the single-bit-flip

model, the fault coverage for HPCCG(Non-opt) is reduced by ∼ 18%.

This is mainly because a significant portion of fault injections are

performed on loop induction variables, which are unrecoverable

by CARE. In such case, while single-bit-flip faults could probably

lead to SDCs if they are injected to lower bits, multi-bit-flip faults

could reduce this possibility, and are more likely to trigger soft

failures. For other cases, CARE achieved comparable or slightly

better coverage under double-bit-flip fault model, which could be

mainly due to low manifestation latency.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
For single process evaluation, we ran the benchmarks mentioned in
the paper on a desktop equipped with AMD Ryzen 2700X and 16GB
memory, and for evaluation of parallel jobs, we ran the benchmarks
on a custom built cluster equipped with 64 haswell compute nodes,
each with 48 cores and 128GB memory.

ARTIFACT AVAILABILITY
Software Artifact Availability: All author-created software arti-

facts are maintained in a public repository under an OSI-approved
license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: All author-created data artifacts are
maintained in a public repository under an OSI-approved license.

Proprietary Artifacts: No author-created artifacts are proprietary.

List of URLs and/or DOIs where artifacts are available:
https://github.com/kandycs/CARE.git
https://github.gatech.edu/cchen435/CAREExpr.git

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: ChameleonCloud, Intel haswell, AMD
Ryzen 2700x

Operating systems and versions: Ubuntu 16.04/Ubuntu 18.04

Compilers and versions: Clang 6.0.1

Applications and versions: miniMD, GTC-P, CoMD, HPCCG

Libraries and versions: openmpi-4.0.0, llvm-6.0.1, protobuf-3.6.0,
udis86-1.7.2 capstone-4.0-rc, adios-1.13.1, libffi-3.2.1, libdwarf-
20180809, pin-3.7-97619

Output from scripts that gathers execution environment informa-
tion.
# For AMD Ryzen desktop
SUDO_GID=1000
MAIL=/var/mail/USER
LANGUAGE=en_US
USER=USER
HOME=/home/cchen
LC_CTYPE=en_US.UTF-8
COLORTERM=truecolor
SUDO_UID=1000
LOGNAME=USER
TERM=xterm-256color
USERNAME=USER
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/b ⌋

in:/sbin:/bin:/snap/bin↪→

DISPLAY=:0

LANG=en_US.UTF-8
XAUTHORITY=/home/cchen/.Xauthority
LS_COLORS=rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=0 ⌋

1;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;0 ⌋

1:mi=00:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=3 ⌋

4;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:* ⌋

.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:* ⌋

.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31: ⌋

*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31: ⌋

*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz= ⌋

01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.zst=01 ⌋

;31:*.tzst=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01 ⌋

;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01 ⌋

;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01 ⌋

;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01 ⌋

;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01; ⌋

31:*.wim=01;31:*.swm=01;31:*.dwm=01;31:*.esd=01; ⌋

31:*.jpg=01;35:*.jpeg=01;35:*.mjpg=01;35:*.mjpeg ⌋

=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm ⌋

=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm ⌋

=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.sv ⌋

g=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.m ⌋

ov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*. ⌋

mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:* ⌋

.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:* ⌋

.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*. ⌋

rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:* ⌋

.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.x ⌋

wd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.o ⌋

gv=01;35:*.ogx=01;35:*.aac=00;36:*.au=00;36:*.fl ⌋

ac=00;36:*.m4a=00;36:*.mid=00;36:*.midi=00;36:*. ⌋

mka=00;36:*.mp3=00;36:*.mpc=00;36:*.ogg=00;36:*. ⌋

ra=00;36:*.wav=00;36:*.oga=00;36:*.opus=00;36:*. ⌋

spx=00;36:*.xspf=00;36:

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

SUDO_COMMAND=/bin/sh ./collect_environment.sh
SHELL=/usr/bin/zsh
SUDO_USER=cchen
PWD=/home/cchen/Documents/SC
+ lsb_release -a
No LSB modules are available.
Distributor ID: Ubuntu
Description: Ubuntu 18.04.2 LTS
Release: 18.04
Codename: bionic
+ uname -a
Linux YZ 4.15.0-47-generic #50-Ubuntu SMP Wed Mar 13

10:44:52 UTC 2019 x86_64 x86_64 x86_64 GNU/Linux↪→

+ lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 16
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On-line CPU(s) list: 0-15
Thread(s) per core: 2
Core(s) per socket: 8
Socket(s): 1
NUMA node(s): 1
Vendor ID: AuthenticAMD
CPU family: 23
Model: 8
Model name: AMD Ryzen 7 2700X Eight-Core

Processor↪→

Stepping: 2
CPU MHz: 3170.957
CPU max MHz: 3700.0000
CPU min MHz: 2200.0000
BogoMIPS: 7385.39
Virtualization: AMD-V
L1d cache: 32K
L1i cache: 64K
L2 cache: 512K
L3 cache: 8192K
NUMA node0 CPU(s): 0-15
Flags: fpu vme de pse tsc msr pae mce

cx8 apic sep mtrr pge mca cmov pat pse36 clflush
mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt
pdpe1gb rdtscp lm constant_tsc rep_good nopl
nonstop_tsc cpuid extd_apicid aperfmperf pni
pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2
movbe popcnt aes xsave avx f16c rdrand lahf_lm
cmp_legacy svm extapic cr8_legacy abm sse4a
misalignsse 3dnowprefetch osvw skinit wdt tce
topoext perfctr_core perfctr_nb bpext perfctr_llc
mwaitx cpb hw_pstate sme ssbd ibpb vmmcall
fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap
clflushopt sha_ni xsaveopt xsavec xgetbv1 xsaves
clzero irperf xsaveerptr arat npt lbrv svm_lock
nrip_save tsc_scale vmcb_clean flushbyasid
decodeassists pausefilter pfthreshold avic
v_vmsave_vmload vgif overflow_recov succor smca

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

+ cat /proc/meminfo
MemTotal: 16418420 kB
MemFree: 1098732 kB
MemAvailable: 10380424 kB
Buffers: 728856 kB
Cached: 8138008 kB
SwapCached: 23968 kB
Active: 11272040 kB
Inactive: 2835476 kB
Active(anon): 4997620 kB
Inactive(anon): 308336 kB
Active(file): 6274420 kB
Inactive(file): 2527140 kB
Unevictable: 48 kB
Mlocked: 48 kB
SwapTotal: 49998844 kB
SwapFree: 49393916 kB
Dirty: 580 kB

Writeback: 0 kB
AnonPages: 5234516 kB
Mapped: 538280 kB
Shmem: 65292 kB
Slab: 927296 kB
SReclaimable: 816356 kB
SUnreclaim: 110940 kB
KernelStack: 20704 kB
PageTables: 89604 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 58208052 kB
Committed_AS: 17245400 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 0 kB
VmallocChunk: 0 kB
HardwareCorrupted: 0 kB
AnonHugePages: 0 kB
ShmemHugePages: 0 kB
ShmemPmdMapped: 0 kB
CmaTotal: 0 kB
CmaFree: 0 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
DirectMap4k: 686392 kB
DirectMap2M: 16019456 kB
DirectMap1G: 1048576 kB
+ inxi -F -c0
./collect_environment.sh: 14:

./collect_environment.sh: inxi: not found↪→

+ lsblk -a
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
loop0 7:0 0 138.1M 1 loop /snap/lepton/7
loop1 7:1 0 16.6M 1 loop

/snap/ubuntu-budgie-welcome/124↪→

loop2 7:2 0 138.9M 1 loop /snap/lepton/8
loop3 7:3 0 1 loop
loop4 7:4 0 91.1M 1 loop /snap/core/6531
loop5 7:5 0 174.5M 1 loop /snap/spotify/32
loop6 7:6 0 16.6M 1 loop

/snap/ubuntu-budgie-welcome/120↪→

loop7 7:7 0 174M 1 loop /snap/spotify/34
loop8 7:8 0 113.5M 1 loop /snap/lepton/1
loop9 7:9 0 108.9M 1 loop

/snap/odrive-unofficial/2↪→

loop10 7:10 0 16.6M 1 loop

/snap/ubuntu-budgie-welcome/122↪→

loop11 7:11 0 89.3M 1 loop /snap/core/6673
loop12 7:12 0 89.4M 1 loop /snap/core/6818
loop13 7:13 0 180.2M 1 loop /snap/spotify/35
sda 8:0 0 894.3G 0 disk

sda1 8:1 0 894.3G 0 part /home
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nvme0n1 259:0 0 238.5G 0 disk

nvme0n1p1 259:1 0 190.8G 0 part /

nvme0n1p2 259:2 0 1K 0 part

nvme0n1p5 259:3 0 47.7G 0 part [SWAP]
+ lsscsi -s
./collect_environment.sh: 16:

./collect_environment.sh: lsscsi: not found↪→

+ module list
./collect_environment.sh: 17:

./collect_environment.sh: module: not found↪→

+ nvidia-smi
./collect_environment.sh: 18:

./collect_environment.sh: nvidia-smi: not found↪→

+ lshw -short -quiet -sanitize
+ cat
H/W path Device Class

Description↪→

==================================================== ⌋

=======↪→

system To Be
Filled By O.E.M.
(To Be Filled By
O.E.M.)

↪→

↪→

↪→

/0 bus X470

Master SLI/ac↪→

/0/0 memory 64KiB BIOS
/0/10 memory 16GiB

System Memory↪→

/0/10/0 memory [empty]
/0/10/1 memory 8GiB

DIMM DDR4 Synchronous Unbuffered (Unregistered)
2666 MHz (0.4 ns)

↪→

↪→

/0/10/2 memory [empty]
/0/10/3 memory 8GiB

DIMM DDR4 Synchronous Unbuffered (Unregistered)
2666 MHz (0.4 ns)

↪→

↪→

/0/12 memory 768KiB

L1 cache↪→

/0/13 memory 4MiB L2

cache↪→

/0/14 memory 16MiB

L3 cache↪→

/0/15 processor AMD

Ryzen 7 2700X Eight-Core Processor↪→

/0/100 bridge Family

17h (Models 00h-0fh) Root Complex↪→

/0/100/0.2 generic Family

17h (Models 00h-0fh) I/O Memory Management Unit↪→

/0/100/1.3 bridge Family

17h (Models 00h-0fh) PCIe GPP Bridge↪→

/0/100/1.3/0 bus

Advanced Micro Devices, Inc. [AMD]↪→

/0/100/1.3/0/0 usb1 bus xHCI

Host Controller↪→

/0/100/1.3/0/0/9 communication

Bluetooth wireless interface↪→

/0/100/1.3/0/1 usb2 bus xHCI

Host Controller↪→

/0/100/1.3/0.1 storage

Advanced Micro Devices, Inc. [AMD]↪→

/0/100/1.3/0.2 bridge

Advanced Micro Devices, Inc. [AMD]↪→

/0/100/1.3/0.2/0 bridge

Advanced Micro Devices, Inc. [AMD]↪→

/0/100/1.3/0.2/0/0 wlp30s0 network Dual

Band Wireless-AC 3168NGW [Stone Peak]↪→

/0/100/1.3/0.2/1 bridge

Advanced Micro Devices, Inc. [AMD]↪→

/0/100/1.3/0.2/1/0 enp31s0 network I211

Gigabit Network Connection↪→

/0/100/1.3/0.2/2 bridge

Advanced Micro Devices, Inc. [AMD]↪→

/0/100/1.3/0.2/3 bridge

Advanced Micro Devices, Inc. [AMD]↪→

/0/100/1.3/0.2/4 bridge

Advanced Micro Devices, Inc. [AMD]↪→

/0/100/1.3/0.2/4/0 storage

Realtek Semiconductor Co., Ltd.↪→

/0/100/1.3/0.2/6 bridge

Advanced Micro Devices, Inc. [AMD]↪→

/0/100/1.3/0.2/7 bridge

Advanced Micro Devices, Inc. [AMD]↪→

/0/100/3.1 bridge Family

17h (Models 00h-0fh) PCIe GPP Bridge↪→

/0/100/3.1/0 display GP106

[GeForce GTX 1060 6GB]↪→

/0/100/3.1/0.1 multimedia GP106

High Definition Audio Controller↪→

/0/100/7.1 bridge Family
17h (Models 00h-0fh) Internal PCIe GPP Bridge 0 to
Bus B

↪→

↪→

/0/100/7.1/0 generic

Advanced Micro Devices, Inc. [AMD]↪→

/0/100/7.1/0.2 generic Family

17h (Models 00h-0fh) Platform Security Processor↪→

/0/100/7.1/0.3 bus USB 3.0

Host controller↪→

/0/100/7.1/0.3/0 usb3 bus xHCI

Host Controller↪→

/0/100/7.1/0.3/0/2 bus

HighSpeed Hub↪→

/0/100/7.1/0.3/0/2/1 input HHKB

Professional↪→

/0/100/7.1/0.3/0/2/3 input USB

Receiver↪→

/0/100/7.1/0.3/0/4 input USB

Receiver↪→
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/0/100/7.1/0.3/1 usb4 bus xHCI

Host Controller↪→

/0/100/8.1 bridge Family
17h (Models 00h-0fh) Internal PCIe GPP Bridge 0 to
Bus B

↪→

↪→

/0/100/8.1/0 generic

Advanced Micro Devices, Inc. [AMD]↪→

/0/100/8.1/0.2 storage FCH

SATA Controller [AHCI mode]↪→

/0/100/8.1/0.3 multimedia Family

17h (Models 00h-0fh) HD Audio Controller↪→

/0/100/14 bus FCH

SMBus Controller↪→

/0/100/14.3 bridge FCH LPC

Bridge↪→

/0/101 bridge Family

17h (Models 00h-0fh) PCIe Dummy Host Bridge↪→

/0/102 bridge Family

17h (Models 00h-0fh) PCIe Dummy Host Bridge↪→

/0/103 bridge Family

17h (Models 00h-0fh) PCIe Dummy Host Bridge↪→

/0/104 bridge Family

17h (Models 00h-0fh) PCIe Dummy Host Bridge↪→

/0/105 bridge Family

17h (Models 00h-0fh) PCIe Dummy Host Bridge↪→

/0/106 bridge Family

17h (Models 00h-0fh) PCIe Dummy Host Bridge↪→

/0/107 bridge Family
17h (Models 00h-0fh) Data Fabric: Device 18h;
Function 0

↪→

↪→

/0/108 bridge Family
17h (Models 00h-0fh) Data Fabric: Device 18h;
Function 1

↪→

↪→

/0/109 bridge Family
17h (Models 00h-0fh) Data Fabric: Device 18h;
Function 2

↪→

↪→

/0/10a bridge Family
17h (Models 00h-0fh) Data Fabric: Device 18h;
Function 3

↪→

↪→

/0/10b bridge Family
17h (Models 00h-0fh) Data Fabric: Device 18h;
Function 4

↪→

↪→

/0/10c bridge Family
17h (Models 00h-0fh) Data Fabric: Device 18h;
Function 5

↪→

↪→

/0/10d bridge Family
17h (Models 00h-0fh) Data Fabric: Device 18h;
Function 6

↪→

↪→

/0/10e bridge Family
17h (Models 00h-0fh) Data Fabric: Device 18h;
Function 7

↪→

↪→

/0/1 scsi0 storage
/0/1/0.0.0 /dev/sda disk 960GB

ADATA SU650↪→

/0/1/0.0.0/1 /dev/sda1 volume 894GiB

EXT4 volume↪→

# For Cluster
./colloect.sh: 1: ./colloect.sh: nux: not found
./colloect.sh: 1: ./colloect.sh: adjust: not found
SUDO_GID=1011
MAIL=/var/mail/USER
USER=USER
HOME=/home/cc
LC_CTYPE=en_US.UTF-8
SUDO_UID=1000
LOGNAME=USER
TERM=xterm-256color
USERNAME=USER
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/b ⌋

in:/sbin:/bin:/snap/bin↪→

LANG=en_US.UTF-8
LS_COLORS=rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=0 ⌋

1;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;0 ⌋

1:mi=00:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=3 ⌋

4;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:* ⌋

.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:* ⌋

.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31: ⌋

*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31: ⌋

*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz= ⌋

01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01 ⌋

;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01; ⌋

31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01; ⌋

31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01; ⌋

31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01; ⌋

31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01; ⌋

35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01; ⌋

35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01; ⌋

35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01 ⌋

;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=0 ⌋

1;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv= ⌋

01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v ⌋

=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv ⌋

=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb ⌋

=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv ⌋

=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=0 ⌋

1;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.ogv=0 ⌋

1;35:*.ogx=01;35:*.aac=00;36:*.au=00;36:*.flac=0 ⌋

0;36:*.m4a=00;36:*.mid=00;36:*.midi=00;36:*.mka= ⌋

00;36:*.mp3=00;36:*.mpc=00;36:*.ogg=00;36:*.ra=0 ⌋

0;36:*.wav=00;36:*.oga=00;36:*.opus=00;36:*.spx= ⌋

00;36:*.xspf=00;36:

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

SUDO_COMMAND=/bin/sh ./colloect.sh
SHELL=/bin/bash
SUDO_USER=cc
PWD=/home/cc
+ lsb_release -a
No LSB modules are available.
Distributor ID: Ubuntu
Description: Ubuntu 16.04.6 LTS
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Release: 16.04
Codename: xenial
+ uname -a
Linux fm 4.4.0-143-generic #169-Ubuntu SMP Thu Feb 7

07:56:38 UTC 2019 x86_64 x86_64 x86_64 GNU/Linux↪→

+ lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 48
On-line CPU(s) list: 0-47
Thread(s) per core: 2
Core(s) per socket: 12
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 63
Model name: Intel(R) Xeon(R) CPU E5-2670 v3

@ 2.30GHz↪→

Stepping: 2
CPU MHz: 1201.750
CPU max MHz: 3100.0000
CPU min MHz: 1200.0000
BogoMIPS: 4601.25
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 30720K
NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22 ⌋

,24,26,28,30,32,34,36,38,40,42,44,46↪→

NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23 ⌋

,25,27,29,31,33,35,37,39,41,43,45,47↪→

Flags: fpu vme de pse tsc msr pae mce
cx8 apic sep mtrr pge mca cmov pat pse36 clflush
dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx
pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs
bts rep_good nopl xtopology nonstop_tsc
aperfmperf pni pclmulqdq dtes64 monitor ds_cpl
vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid
dca sse4_1 sse4_2 x2apic movbe popcnt
tsc_deadline_timer aes xsave avx f16c rdrand
lahf_lm abm epb invpcid_single ssbd ibrs ibpb
stibp kaiser tpr_shadow vnmi flexpriority ept
vpid fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms
invpcid cqm xsaveopt cqm_llc cqm_occup_llc dtherm
ida arat pln pts flush_l1d

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

+ cat /proc/meminfo
MemTotal: 131784524 kB
MemFree: 64850008 kB
MemAvailable: 84679732 kB
Buffers: 864084 kB
Cached: 19670556 kB
SwapCached: 0 kB
Active: 61611340 kB

Inactive: 2967620 kB
Active(anon): 44879004 kB
Inactive(anon): 562436 kB
Active(file): 16732336 kB
Inactive(file): 2405184 kB
Unevictable: 3652 kB
Mlocked: 3652 kB
SwapTotal: 0 kB
SwapFree: 0 kB
Dirty: 236 kB
Writeback: 0 kB
AnonPages: 44047552 kB
Mapped: 491952 kB
Shmem: 1394692 kB
Slab: 1578644 kB
SReclaimable: 1318284 kB
SUnreclaim: 260360 kB
KernelStack: 53664 kB
PageTables: 159380 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 65892260 kB
Committed_AS: 146129368 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 0 kB
VmallocChunk: 0 kB
HardwareCorrupted: 0 kB
AnonHugePages: 0 kB
CmaTotal: 0 kB
CmaFree: 0 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
DirectMap4k: 201424 kB
DirectMap2M: 3766272 kB
DirectMap1G: 132120576 kB
+ inxi -F -c0
./colloect.sh: 12: ./colloect.sh: inxi: not found
+ lsblk -a
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 232.9G 0 disk

sda1 8:1 0 232.9G 0 part /
sr0 11:0 1 1024M 0 rom
loop0 7:0 0 0 loop
loop1 7:1 0 0 loop
loop2 7:2 0 0 loop
loop3 7:3 0 0 loop
loop4 7:4 0 0 loop
loop5 7:5 0 0 loop
loop6 7:6 0 0 loop
loop7 7:7 0 0 loop
+ lsscsi -s
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[0:0:0:0] disk ATA ST9250610NS AA65

/dev/sda 250GB↪→

[10:0:0:0] cd/dvd HL-DT-ST DVD+-RW GU90N A3B0

/dev/sr0 -↪→

+ module list
./colloect.sh: 15: ./colloect.sh: module: not found
+ nvidia-smi
./colloect.sh: 16: ./colloect.sh: nvidia-smi: not

found↪→

+ lshw -short -quiet -sanitize
+ cat
H/W path Device Class

Description↪→

==================================================== ⌋

=======↪→

system PowerEdge
R630 (SKU=NotPr ⌋

ovided;ModelNam ⌋

e=PowerEdge
R630)

↪→

↪→

↪→

↪→

/0 bus 0CNCJW
/0/0 memory 64KiB BIOS
/0/400 processor

Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz↪→

/0/400/700 memory 768KiB

L1 cache↪→

/0/400/701 memory 3MiB L2

cache↪→

/0/400/702 memory 30MiB

L3 cache↪→

/0/401 processor

Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz↪→

/0/401/703 memory 768KiB

L1 cache↪→

/0/401/704 memory 3MiB L2

cache↪→

/0/401/705 memory 30MiB

L3 cache↪→

/0/1000 memory 128GiB

System Memory↪→

/0/1000/0 memory 16GiB

DIMM Synchronous 2133 MHz (0.5 ns)↪→

/0/1000/1 memory 16GiB

DIMM Synchronous 2133 MHz (0.5 ns)↪→

/0/1000/2 memory 16GiB

DIMM Synchronous 2133 MHz (0.5 ns)↪→

/0/1000/3 memory 16GiB

DIMM Synchronous 2133 MHz (0.5 ns)↪→

/0/1000/4 memory [empty]
/0/1000/5 memory [empty]
/0/1000/6 memory [empty]
/0/1000/7 memory [empty]
/0/1000/8 memory [empty]
/0/1000/9 memory [empty]
/0/1000/a memory [empty]

/0/1000/b memory [empty]
/0/1000/c memory 16GiB

DIMM Synchronous 2133 MHz (0.5 ns)↪→

/0/1000/d memory 16GiB

DIMM Synchronous 2133 MHz (0.5 ns)↪→

/0/1000/e memory 16GiB

DIMM Synchronous 2133 MHz (0.5 ns)↪→

/0/1000/f memory 16GiB

DIMM Synchronous 2133 MHz (0.5 ns)↪→

/0/1000/10 memory [empty]
/0/1000/11 memory [empty]
/0/1000/12 memory [empty]
/0/1000/13 memory [empty]
/0/1000/14 memory [empty]
/0/1000/15 memory [empty]
/0/1000/16 memory [empty]
/0/1000/17 memory [empty]
/0/100 bridge Xeon E7

v3/Xeon E5 v3/Core i7 DMI2↪→

/0/100/1 bridge Xeon E7

v3/Xeon E5 v3/Core i7 PCI Express Root Port 1↪→

/0/100/1/0 scsi0 storage

MegaRAID SAS-3 3008 [Fury]↪→

/0/100/1/0/0.0.0 /dev/sda disk 250GB

ST9250610NS↪→

/0/100/1/0/0.0.0/1 /dev/sda1 volume 232GiB

EXT4 volume↪→

/0/100/2 bridge Xeon E7

v3/Xeon E5 v3/Core i7 PCI Express Root Port 2↪→

/0/100/3 bridge Xeon E7

v3/Xeon E5 v3/Core i7 PCI Express Root Port 3↪→

/0/100/3/0 eno1 network

NetXtreme II BCM57800 1/10 Gigabit Ethernet↪→

/0/100/3/0.1 eno2 network

NetXtreme II BCM57800 1/10 Gigabit Ethernet↪→

/0/100/3/0.2 eno3 network

NetXtreme II BCM57800 1/10 Gigabit Ethernet↪→

/0/100/3/0.3 eno4 network

NetXtreme II BCM57800 1/10 Gigabit Ethernet↪→

/0/100/3.2 bridge Xeon E7

v3/Xeon E5 v3/Core i7 PCI Express Root Port 3↪→

/0/100/5 generic Xeon E7
v3/Xeon E5 v3/Core i7 Address Map, VTd_Misc,
System Management

↪→

↪→

/0/100/5.1 generic Xeon E7

v3/Xeon E5 v3/Core i7 Hot Plug↪→

/0/100/5.2 generic Xeon E7
v3/Xeon E5 v3/Core i7 RAS, Control Status and
Global Errors

↪→

↪→

/0/100/5.4 generic Xeon E7

v3/Xeon E5 v3/Core i7 I/O APIC↪→

/0/100/11 generic

C610/X99 series chipset SPSR↪→

/0/100/11.4 storage C610/X99

series chipset sSATA Controller [AHCI mode]↪→
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/0/100/16 communication

C610/X99 series chipset MEI Controller #1↪→

/0/100/16.1 communication

C610/X99 series chipset MEI Controller #2↪→

/0/100/1a bus C610/X99

series chipset USB Enhanced Host Controller #2↪→

/0/100/1a/1 usb1 bus EHCI

Host Controller↪→

/0/100/1a/1/1 bus USB hub
/0/100/1a/1/1/6 bus Gadget

USB HUB↪→

/0/100/1c bridge

C610/X99 series chipset PCI Express Root Port #1↪→

/0/100/1c.7 bridge

C610/X99 series chipset PCI Express Root Port #8↪→

/0/100/1c.7/0 bridge SH7758

PCIe Switch [PS]↪→

/0/100/1c.7/0/0 bridge SH7758

PCIe Switch [PS]↪→

/0/100/1c.7/0/0/0 bridge SH7758

PCIe-PCI Bridge [PPB]↪→

/0/100/1c.7/0/0/0/0 display G200eR2
/0/100/1d bus C610/X99

series chipset USB Enhanced Host Controller #1↪→

/0/100/1d/1 usb2 bus EHCI

Host Controller↪→

/0/100/1d/1/1 bus USB hub
/0/100/1f bridge

C610/X99 series chipset LPC Controller↪→

/0/100/1f.2 storage C610/X99

series chipset 6-Port SATA Controller [AHCI mode]↪→

/0/2 generic Xeon E7

v3/Xeon E5 v3/Core i7 QPI Link 0↪→

/0/4 generic Xeon E7

v3/Xeon E5 v3/Core i7 QPI Link 0↪→

/0/6 generic Xeon E7

v3/Xeon E5 v3/Core i7 QPI Link 0↪→

/0/7 generic Xeon E7

v3/Xeon E5 v3/Core i7 QPI Link 1↪→

/0/8 generic Xeon E7

v3/Xeon E5 v3/Core i7 QPI Link 1↪→

/0/9 generic Xeon E7

v3/Xeon E5 v3/Core i7 QPI Link 1↪→

/0/a generic Xeon E7

v3/Xeon E5 v3/Core i7 R3 QPI Link 0 & 1 Monitoring↪→

/0/b generic Xeon E7

v3/Xeon E5 v3/Core i7 R3 QPI Link 0 & 1 Monitoring↪→

/0/c generic Xeon E7

v3/Xeon E5 v3/Core i7 R3 QPI Link 0 & 1 Monitoring↪→

/0/d generic Xeon E7

v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/e generic Xeon E7

v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/f generic Xeon E7

v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/10 generic Xeon E7

v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/11 generic Xeon E7

v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/12 generic Xeon E7

v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/13 generic Xeon E7

v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/14 generic Xeon E7

v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/15 generic Xeon E7

v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/16 generic Xeon E7

v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/17 generic Xeon E7

v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/18 generic Xeon E7

v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/19 generic Xeon E7

v3/Xeon E5 v3/Core i7 Buffered Ring Agent↪→

/0/1a generic Xeon E7

v3/Xeon E5 v3/Core i7 Buffered Ring Agent↪→

/0/1b generic Xeon E7

v3/Xeon E5 v3/Core i7 Buffered Ring Agent↪→

/0/1c generic Xeon E7

v3/Xeon E5 v3/Core i7 Buffered Ring Agent↪→

/0/1d generic Xeon E7
v3/Xeon E5 v3/Core i7 System Address Decoder &
Broadcast Registers

↪→

↪→

/0/1e generic Xeon E7
v3/Xeon E5 v3/Core i7 System Address Decoder &
Broadcast Registers

↪→

↪→

/0/1f generic Xeon E7
v3/Xeon E5 v3/Core i7 System Address Decoder &
Broadcast Registers

↪→

↪→

/0/20 generic Xeon E7

v3/Xeon E5 v3/Core i7 PCIe Ring Interface↪→

/0/21 generic Xeon E7

v3/Xeon E5 v3/Core i7 PCIe Ring Interface↪→

/0/22 generic Xeon E7
v3/Xeon E5 v3/Core i7 Scratchpad & Semaphore
Registers

↪→

↪→

/0/23 generic Xeon E7
v3/Xeon E5 v3/Core i7 Scratchpad & Semaphore
Registers

↪→

↪→

/0/24 generic Xeon E7
v3/Xeon E5 v3/Core i7 Scratchpad & Semaphore
Registers

↪→

↪→

/0/25 generic Xeon E7

v3/Xeon E5 v3/Core i7 Home Agent 0↪→

/0/26 generic Xeon E7

v3/Xeon E5 v3/Core i7 Home Agent 0↪→
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/0/27 generic Xeon E7

v3/Xeon E5 v3/Core i7 Home Agent 0 Debug↪→

/0/28 generic Xeon E7

v3/Xeon E5 v3/Core i7 Home Agent 1↪→

/0/29 generic Xeon E7

v3/Xeon E5 v3/Core i7 Home Agent 1↪→

/0/2a generic Xeon E7

v3/Xeon E5 v3/Core i7 Home Agent 1 Debug↪→

/0/2b generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory Controller
0 Target Address, Thermal & RAS Registers

↪→

↪→

/0/2c generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory Controller
0 Target Address, Thermal & RAS Registers

↪→

↪→

/0/2d generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 0 Channel Target Address Decoder

↪→

↪→

/0/2e generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 0 Channel Target Address Decoder

↪→

↪→

/0/2f generic Xeon E7

v3/Xeon E5 v3/Core i7 DDRIO Channel 0/1 Broadcast↪→

/0/30 generic Xeon E7

v3/Xeon E5 v3/Core i7 DDRIO Global Broadcast↪→

/0/31 generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 0 Channel 0 Thermal Control

↪→

↪→

/0/32 generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 0 Channel 1 Thermal Control

↪→

↪→

/0/33 generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 0 Channel 0 ERROR Registers

↪→

↪→

/0/34 generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 0 Channel 1 ERROR Registers

↪→

↪→

/0/35 generic Xeon E7

v3/Xeon E5 v3/Core i7 DDRIO (VMSE) 0 & 1↪→

/0/36 generic Xeon E7

v3/Xeon E5 v3/Core i7 DDRIO (VMSE) 0 & 1↪→

/0/37 generic Xeon E7

v3/Xeon E5 v3/Core i7 DDRIO (VMSE) 0 & 1↪→

/0/38 generic Xeon E7

v3/Xeon E5 v3/Core i7 DDRIO (VMSE) 0 & 1↪→

/0/39 generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory Controller
1 Target Address, Thermal & RAS Registers

↪→

↪→

/0/3a generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory Controller
1 Target Address, Thermal & RAS Registers

↪→

↪→

/0/3b generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 1 Channel Target Address Decoder

↪→

↪→

/0/3c generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 1 Channel Target Address Decoder

↪→

↪→

/0/3d generic Xeon E7

v3/Xeon E5 v3/Core i7 DDRIO Channel 2/3 Broadcast↪→

/0/3e generic Xeon E7

v3/Xeon E5 v3/Core i7 DDRIO Global Broadcast↪→

/0/3f generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 1 Channel 0 Thermal Control

↪→

↪→

/0/40 generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 1 Channel 1 Thermal Control

↪→

↪→

/0/41 generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 1 Channel 0 ERROR Registers

↪→

↪→

/0/42 generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 1 Channel 1 ERROR Registers

↪→

↪→

/0/43 generic Xeon E7

v3/Xeon E5 v3/Core i7 DDRIO (VMSE) 2 & 3↪→

/0/44 generic Xeon E7

v3/Xeon E5 v3/Core i7 DDRIO (VMSE) 2 & 3↪→

/0/45 generic Xeon E7

v3/Xeon E5 v3/Core i7 DDRIO (VMSE) 2 & 3↪→

/0/46 generic Xeon E7

v3/Xeon E5 v3/Core i7 DDRIO (VMSE) 2 & 3↪→

/0/47 generic Xeon E7

v3/Xeon E5 v3/Core i7 Power Control Unit↪→

/0/48 generic Xeon E7

v3/Xeon E5 v3/Core i7 Power Control Unit↪→

/0/49 generic Xeon E7

v3/Xeon E5 v3/Core i7 Power Control Unit↪→

/0/4a generic Xeon E7

v3/Xeon E5 v3/Core i7 Power Control Unit↪→

/0/4b generic Xeon E7

v3/Xeon E5 v3/Core i7 Power Control Unit↪→

/0/4c generic Xeon E7

v3/Xeon E5 v3/Core i7 VCU↪→

/0/4d generic Xeon E7

v3/Xeon E5 v3/Core i7 VCU↪→

/0/1 bridge Xeon E7

v3/Xeon E5 v3/Core i7 PCI Express Root Port 1↪→

/0/3 bridge Xeon E7

v3/Xeon E5 v3/Core i7 PCI Express Root Port 3↪→

/0/5 generic Xeon E7
v3/Xeon E5 v3/Core i7 Address Map, VTd_Misc,
System Management

↪→

↪→

/0/5.1 generic Xeon E7

v3/Xeon E5 v3/Core i7 Hot Plug↪→

/0/5.2 generic Xeon E7
v3/Xeon E5 v3/Core i7 RAS, Control Status and
Global Errors

↪→

↪→

/0/5.4 generic Xeon E7

v3/Xeon E5 v3/Core i7 I/O APIC↪→

/0/4e generic Xeon E7

v3/Xeon E5 v3/Core i7 QPI Link 0↪→
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/0/4f generic Xeon E7

v3/Xeon E5 v3/Core i7 QPI Link 0↪→

/0/50 generic Xeon E7

v3/Xeon E5 v3/Core i7 QPI Link 0↪→

/0/51 generic Xeon E7

v3/Xeon E5 v3/Core i7 QPI Link 1↪→

/0/52 generic Xeon E7

v3/Xeon E5 v3/Core i7 QPI Link 1↪→

/0/53 generic Xeon E7

v3/Xeon E5 v3/Core i7 QPI Link 1↪→

/0/54 generic Xeon E7

v3/Xeon E5 v3/Core i7 R3 QPI Link 0 & 1 Monitoring↪→

/0/55 generic Xeon E7

v3/Xeon E5 v3/Core i7 R3 QPI Link 0 & 1 Monitoring↪→

/0/56 generic Xeon E7

v3/Xeon E5 v3/Core i7 R3 QPI Link 0 & 1 Monitoring↪→

/0/57 generic Xeon E7

v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/58 generic Xeon E7

v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/59 generic Xeon E7

v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/5a generic Xeon E7

v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/5b generic Xeon E7

v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/5c generic Xeon E7

v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/5d generic Xeon E7

v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/5e generic Xeon E7

v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/5f generic Xeon E7

v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/60 generic Xeon E7

v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/61 generic Xeon E7

v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/62 generic Xeon E7

v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/63 generic Xeon E7

v3/Xeon E5 v3/Core i7 Buffered Ring Agent↪→

/0/64 generic Xeon E7

v3/Xeon E5 v3/Core i7 Buffered Ring Agent↪→

/0/65 generic Xeon E7

v3/Xeon E5 v3/Core i7 Buffered Ring Agent↪→

/0/66 generic Xeon E7

v3/Xeon E5 v3/Core i7 Buffered Ring Agent↪→

/0/67 generic Xeon E7
v3/Xeon E5 v3/Core i7 System Address Decoder &
Broadcast Registers

↪→

↪→

/0/68 generic Xeon E7
v3/Xeon E5 v3/Core i7 System Address Decoder &
Broadcast Registers

↪→

↪→

/0/69 generic Xeon E7
v3/Xeon E5 v3/Core i7 System Address Decoder &
Broadcast Registers

↪→

↪→

/0/6a generic Xeon E7

v3/Xeon E5 v3/Core i7 PCIe Ring Interface↪→

/0/6b generic Xeon E7

v3/Xeon E5 v3/Core i7 PCIe Ring Interface↪→

/0/6c generic Xeon E7
v3/Xeon E5 v3/Core i7 Scratchpad & Semaphore
Registers

↪→

↪→

/0/6d generic Xeon E7
v3/Xeon E5 v3/Core i7 Scratchpad & Semaphore
Registers

↪→

↪→

/0/6e generic Xeon E7
v3/Xeon E5 v3/Core i7 Scratchpad & Semaphore
Registers

↪→

↪→

/0/6f generic Xeon E7

v3/Xeon E5 v3/Core i7 Home Agent 0↪→

/0/70 generic Xeon E7

v3/Xeon E5 v3/Core i7 Home Agent 0↪→

/0/71 generic Xeon E7

v3/Xeon E5 v3/Core i7 Home Agent 0 Debug↪→

/0/72 generic Xeon E7

v3/Xeon E5 v3/Core i7 Home Agent 1↪→

/0/73 generic Xeon E7

v3/Xeon E5 v3/Core i7 Home Agent 1↪→

/0/74 generic Xeon E7

v3/Xeon E5 v3/Core i7 Home Agent 1 Debug↪→

/0/75 generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory Controller
0 Target Address, Thermal & RAS Registers

↪→

↪→

/0/76 generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory Controller
0 Target Address, Thermal & RAS Registers

↪→

↪→

/0/77 generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 0 Channel Target Address Decoder

↪→

↪→

/0/78 generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 0 Channel Target Address Decoder

↪→

↪→

/0/79 generic Xeon E7

v3/Xeon E5 v3/Core i7 DDRIO Channel 0/1 Broadcast↪→

/0/7a generic Xeon E7

v3/Xeon E5 v3/Core i7 DDRIO Global Broadcast↪→

/0/7b generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 0 Channel 0 Thermal Control

↪→

↪→

/0/7c generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 0 Channel 1 Thermal Control

↪→

↪→

/0/7d generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 0 Channel 0 ERROR Registers

↪→

↪→

/0/7e generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 0 Channel 1 ERROR Registers

↪→

↪→
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/0/7f generic Xeon E7

v3/Xeon E5 v3/Core i7 DDRIO (VMSE) 0 & 1↪→

/0/80 generic Xeon E7

v3/Xeon E5 v3/Core i7 DDRIO (VMSE) 0 & 1↪→

/0/81 generic Xeon E7

v3/Xeon E5 v3/Core i7 DDRIO (VMSE) 0 & 1↪→

/0/82 generic Xeon E7

v3/Xeon E5 v3/Core i7 DDRIO (VMSE) 0 & 1↪→

/0/83 generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory Controller
1 Target Address, Thermal & RAS Registers

↪→

↪→

/0/84 generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory Controller
1 Target Address, Thermal & RAS Registers

↪→

↪→

/0/85 generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 1 Channel Target Address Decoder

↪→

↪→

/0/86 generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 1 Channel Target Address Decoder

↪→

↪→

/0/87 generic Xeon E7

v3/Xeon E5 v3/Core i7 DDRIO Channel 2/3 Broadcast↪→

/0/88 generic Xeon E7

v3/Xeon E5 v3/Core i7 DDRIO Global Broadcast↪→

/0/89 generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 1 Channel 0 Thermal Control

↪→

↪→

/0/8a generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 1 Channel 1 Thermal Control

↪→

↪→

/0/8b generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 1 Channel 0 ERROR Registers

↪→

↪→

/0/8c generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 1 Channel 1 ERROR Registers

↪→

↪→

/0/8d generic Xeon E7

v3/Xeon E5 v3/Core i7 DDRIO (VMSE) 2 & 3↪→

/0/8e generic Xeon E7

v3/Xeon E5 v3/Core i7 DDRIO (VMSE) 2 & 3↪→

/0/8f generic Xeon E7

v3/Xeon E5 v3/Core i7 DDRIO (VMSE) 2 & 3↪→

/0/90 generic Xeon E7

v3/Xeon E5 v3/Core i7 DDRIO (VMSE) 2 & 3↪→

/0/91 generic Xeon E7

v3/Xeon E5 v3/Core i7 Power Control Unit↪→

/0/92 generic Xeon E7

v3/Xeon E5 v3/Core i7 Power Control Unit↪→

/0/93 generic Xeon E7

v3/Xeon E5 v3/Core i7 Power Control Unit↪→

/0/94 generic Xeon E7

v3/Xeon E5 v3/Core i7 Power Control Unit↪→

/0/95 generic Xeon E7

v3/Xeon E5 v3/Core i7 Power Control Unit↪→

/0/96 generic Xeon E7

v3/Xeon E5 v3/Core i7 VCU↪→

/0/97 generic Xeon E7

v3/Xeon E5 v3/Core i7 VCU↪→

/0/98 scsi10 storage
/0/98/0.0.0 /dev/cdrom disk

DVD+-RW GU90N↪→

/1 power 0G6W6KA00
/2 power 0G6W6KA00

ARTIFACT EVALUATION
Accuracy and precision of timings: average numbers were taken

for timing measurements

Quantified the sensitivity of results to initial conditions and/or
parameters of the computational environment: could be sensitive
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